If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10c^2-15c+25=0
a = -10; b = -15; c = +25;
Δ = b2-4ac
Δ = -152-4·(-10)·25
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-35}{2*-10}=\frac{-20}{-20} =1 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+35}{2*-10}=\frac{50}{-20} =-2+1/2 $
| x-4=x/4+1/8 | | 94+23+x=180 | | 2x/3-x/2+2x-2/5+3/2=2x/3-x/2 | | x/14=7’ | | h+33=63 | | 3z–10=z+60 | | d+27=40 | | 2x-60=x/2 | | 10z^2-9z-22=0 | | 55=r-31 | | -9.7=x/3 | | 36=32x+2 | | -18=2-r | | p-85=2 | | 55=t+51 | | -8a-3a+5=-5a+17 | | g+49=92 | | 2w^2+6w+4=0 | | √17−x2−1=8−2x | | -2=2x=-3+7x | | -7.3=x/(-5) | | 14+4t=28 | | d-42=50 | | 12.4=x/2 | | 3t=-88.16 | | Y=9x+9.Y=2x-5 | | -(2-x)=5 | | -2x+9=-5x-9 | | q-63=23 | | 4y+5-7=2y+6.Y= | | 3(r-5)-3(r-6)+r=8 | | -7(3-4x)=119 |